Tetrahedron 57 (2001) 6051-6056

# A new example of $1\alpha$ -hydroxylation of drimanic terpenes through combined microbial and chemical processes

Gérard Aranda,<sup>a</sup> Luis Moreno,<sup>b</sup> Manuel Cortés,<sup>b</sup> Thierry Prangé,<sup>c</sup> Michèle Maurs<sup>d</sup> and Robert Azerad<sup>d,\*</sup>

<sup>a</sup>Laboratoire de Synthèse Organique, UMR 7652, Ecole Polytechnique, 91128 Palaiseau Cedex, France

<sup>b</sup>Facultad de Química, Pontificia Universidad Católica de Chile, Casilla 306, Correo 22-Santiago, Chile

<sup>c</sup>Chimie Structurale Biomoléculaire, UPRES A 7031, UFR Biomédicale, 93017 Bobigny Cedex, France

<sup>d</sup>Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601, Université René Descartes-Paris V,

45 rue des Saints-Peres, 75270 Paris 06, France

Received 20 February 2001; revised 14 May 2001; accepted 30 May 2001

**Abstract**—Among various filamentous fungi, *Aspergillus niger* ATCC 9142 was the most efficient strain to convert confertifolin in high yield into its 3β-hydroxy derivative, which was then chemically converted to  $1\alpha$ -hydroxy-,  $1\alpha$ ,  $11\alpha$ -dihydroxy- and  $1\alpha$ -acetoxy- $11\alpha$ -hydroxyconfertifolin, new compounds structurally related to bioactive natural products isolated from plants or marine sponges. © 2001 Elsevier Science Ltd. All rights reserved.

#### 1. Introduction

Microbial hydroxylations of terpenoid compounds<sup>1</sup> have been repeatedly reported and employed for the regioselective functionalization of a number of commonly found sesqui- and diterpenes, representing a unique and inexpensive source of structural diversity. Much attention has been paid to the synthesis of hydroxylated drimanic compounds<sup>2-8</sup> due to their wide range of biological activities and possible industrial applications. The microbial hydroxylation of this type of 4,4-dimethyl sesquiterpenes invariably leads to

 $3\beta$ -hydroxylated derivatives, sometimes naturally found as minor compounds. Hydroxylation at the 1-position, a distinctive feature of several bioactive terpenes, cannot be achieved by this method. However, starting from  $3\beta$ -hydroxy derivatives, we have previously shown that a simple sequence of reactions can result in a functionalization transfer, allowing the preparation in good yields of the corresponding  $1\alpha$ -hydroxylated compounds.  $^{7,9,10}$ 

In this report, we describe the extension of these reactions to the preparation of  $1\alpha$ -hydroxylated derivatives of

**Table 1.**  $3\beta$ -Hydroxylation of confertifolin **1** (0.5 g L<sup>-1</sup>) upon incubation with some 65 h-grown fungal cultures (27°C, 250 rpm)

| Microorganisms                      | Incubation time (days) | 3β-hydroxyconfertifolin 2 <sup>a,b</sup> |  |  |  |  |
|-------------------------------------|------------------------|------------------------------------------|--|--|--|--|
| Absidia blakesleeana ATCC 6811      | 8                      | ++                                       |  |  |  |  |
| A. niger ATCC 9142                  | 5                      | ++++                                     |  |  |  |  |
| Chaetomium indicum LCP 98-4200      | 3                      | +++                                      |  |  |  |  |
| Cunninghamella echinulata NRRL 3655 | 3                      | +++                                      |  |  |  |  |
| Cunninghamella elegans ATCC 36112   | 3                      | +                                        |  |  |  |  |
| Curvularia lunata NRRL 2380         | 2                      | +                                        |  |  |  |  |
| Mortierella isabellina NRRL 1757    | 8                      | ++                                       |  |  |  |  |
| Mucor plumbeus ATCC 4740            | 5                      | +++                                      |  |  |  |  |
| Rhizopus arrhizus ATCC 11145        | 5                      | +++                                      |  |  |  |  |

<sup>&</sup>lt;sup>a</sup> GC/MS measurements.

Keywords: confertifolin; biotransformation; microbial hydroxylation; functionalization transfer.

0040–4020/01/\$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved. PII: S0040-4020(01)00595-6

b +: 5-15%; ++: 16-40%; +++: 41-65%; ++++: 66-90%

<sup>\*</sup> Corresponding author. Tel.: +33-1-42-86-21-71; fax: +33-1-42-86-83-87; e-mail: robert.azerad@biomedicale.univ-paris5.fr

$$R_{13}$$
  $R_{14}$   $R_{14}$   $R_{15}$   $R_{14}$   $R_{15}$   $R$ 

Scheme 1. (i) A. niger ATCC 9142. (ii) Ph<sub>3</sub>P, DEAD in refluxing THF. (iii) SeO<sub>2</sub>, NPO in dioxane, 100°C. (iv) AC<sub>2</sub>O, DMAP, 4°C.

confertifolin 1, a  $\Delta^{8-9}$ -drimenic lactone from a South American tree commonly found in Chile and Argentina, *Drimys winteri* Forst.<sup>11</sup>

#### 2. Results and discussion

As a complement to previous studies,  $^8$  a number of fungal or bacterial microorganisms (20 strains) generally employed for terpene metabolism were investigated for the biotransformation of confertifolin. The most significant results are summarized in Table 1. *Aspergillus niger* ATCC 9142 remained the most efficient strain and afforded the corresponding  $3\beta$ -hydroxylated derivative in 80–90% yield after simple crystallisation from the crude incubation extract.

Application to  $3\beta$ -hydroxyconfertifolin  $\mathbf{2}$  of the previously described dehydration/oxidation reaction sequence <sup>10</sup> leading to a functionalization transfer to position  $1\alpha$ - afforded (Scheme 1) two hydroxylated derivatives which were more easily separated as their acetate esters. After mild alkaline hydrolysis ( $K_2CO_3$ , MeOH), the new alcohols were respectively identified as the  $1\alpha$ -hydroxy-2,3-dehydroconfertifolin 4a and the  $1\alpha$ , $11\alpha$ -dihydroxy-2,3-dehydroconfertifolin 5a by high field NMR and mass spectrometry.

The expected  $1\alpha$ -hydroxy derivative **4a** (20–35%, see Table 2) exhibited a broad singlet at 3.87 ppm by  $^{1}$ H NMR, with a characteristic pattern similar to that previously described for  $1\alpha$ -derivatives (an ABX system between 2-, 3- and 1-hydrogens, with a H-1/H-2 coupling constant of 5.7 Hz).  $^{10}$ 

Table 2. Selenium dioxide oxidation of 2,3-dehydroconfertifolin (3) (pyridine-N-oxide: 7-8 equiv.; dioxane; 100°C)

| SeO <sub>2</sub> equivalents | ellents Hours Conversion % |    | Total yield (4a+5a) % | 4a/5a ratio |
|------------------------------|----------------------------|----|-----------------------|-------------|
| 1.5                          | 48                         | 65 | 80                    | 43:57       |
| 2                            | 67                         | 93 | 80                    | 26:74       |

**Table 3.** <sup>13</sup>C Chemical shifts (ppm) of confertifolin derivatives. Unless otherwise indicated, NMR spectra were run in CDCl<sub>3</sub> at 50 MHz. Bracketted data indicating the number of hydrogens attached to each carbon atom were determined by distorsionless enhancement by polarization transfer (DEPT) using a flip angle of 135°

| Carbon no.        | <b>2</b> <sup>a</sup> | 3        | 4a       | 4b       | 5a <sup>b</sup> | 5b       | 5c       | 6        | 7a       | 7b       | 7c       |
|-------------------|-----------------------|----------|----------|----------|-----------------|----------|----------|----------|----------|----------|----------|
| 1                 | 34.2(2)               | 36.2(2)  | 69.4(1)  | 71.5(1)  | 70.0(1)         | 71.8(1)  | 70.9(1)  | 71.4(1)  | 71.3(1)  | 74.7(1)  | 73.6(1)  |
| 2                 | 27.1(2)               | 119.8(1) | 122.6(1) | 118.9(1) | 123.6(1)        | 119.2(1) | 119.5(1) | 25.8(2)  | 26.2(2)  | 22.3(2)  | 22.0(2)  |
| 3                 | 78.3(1)               | 138.7(1) | 143.0(1) | 144.6(1) | 143.0(1)        | 144.0(1) | 144.0(1) | 34.5(2)  | 34.5(2)  | 35.1(2)  | 35.0(2)  |
| 4                 | 39.0(0)               | 34.6(0)  | 35.1(0)  | 35.0(0)  | 35.9(0)         | 35.2(0)  | 35.2(0)  | 33.0(0)  | 33.2(0)  | 33.4(0)  | 32.9(0)  |
| 5                 | 50.6(1)               | 48.2(1)  | 41.3(1)  | 42.2(1)  | 42.5(1)         | 42.7(1)  | 42.7(1)  | 43.9(1)  | 44.2(1)  | 45.2(1)  | 45.4(1)  |
| 6                 | 18.1(2)               | 18.9(2)  | 18.8(2)  | 18.8(2)  | 20.0(2)         | 18.6(2)  | 18.7(2)  | 17.8(2)  | 17.7(2)  | 17.7(2)  | 17.9(2)  |
| 7                 | 21.6(2)               | 21.5(2)  | 21.2(2)  | 21.3(2)  | 22.0(2)         | 21.3(2)  | 21.7(2)  | 21.7(2)  | 21.4(2)  | 21.6(2)  | 22.0(2)  |
| 8                 | 123.8(0)              | 124.1(0) | 125.9(0) | 126.7(0) | 131.0(0)        | 130.6(0) | 132.6(0) | 124.9(0) | 130.6(0) | 129.7(0) | 132.0(0) |
| 9                 | 170.0(0)              | 168.5(0) | 167.6(0) | 165.4(0) | 166.9(0)        | 163.3(0) | 161.2(0) | 169.8(0) | 166.3(0) | 164.9(0) | 162.9(0) |
| 10                | 36.4(0)               | 35.5(0)  | 41.3(0)  | 39.7(0)  | 43.0(0)         | 40.0(0)  | 40.5(0)  | 41.9(0)  | 43.4(0)  | 40.8(0)  | 42.0(0)  |
| 11                | 68.2(2)               | 68.3(2)  | 69.2(2)  | 68.5(2)  | 99.2(1)         | 97.3(1)  | 91.0(1)  | 68.9(2)  | 99.9(1)  | 97.2(1)  | 90.8(1)  |
| 12                | 174.7(0)              | 174.1(0) | 174.7(0) | 174.0(0) | 173.6(0)        | 171.5(0) | 170.6(0) | 175.0(0) | 171.7(0) | 171.4(0) | 170.5(0) |
| 13                | 15.6(3)               | 22.2(3)  | 21.8(3)  | 22.0(3)  | 22.4(3)         | 22.2(3)  | 21.9(3)  | 21.7(3)  | 21.4(3)  | 21.5(3)  | 21.7(3)  |
| 14                | 28.2(3)               | 31.7(3)  | 31.4(3)  | 31.2(3)  | 31.5(3)         | 31.3(3)  | 31.4(3)  | 33.1(3)  | 33.1(3)  | 32.9(3)  | 33.5(3)  |
| 15                | 20.9(3)               | 20.6(3)  | 20.9(3)  | 21.1(3)  | 19.6(3)         | 19.5(3)  | 20.6(3)  | 21.3(3)  | 21.4(3)  | 21.0(3)  | 20.6(3)  |
| COCH <sub>3</sub> | - ` `                 | - ` ´    | - ` ´    | 170.5(0) |                 | 171.6(0) | 169.5(0) |          |          | 171.3(0) | 169.6(0) |
| ,                 | _                     |          |          | 21.6(3)  |                 | 21.3(3)  | 169.8(0) |          |          | 21.7(3)  | 169.9(0) |
|                   |                       |          |          |          |                 |          | 21.3(3)  |          |          |          | 21.5(3)  |

<sup>&</sup>lt;sup>a</sup> See Ref. 8.

<sup>&</sup>lt;sup>b</sup> In CD<sub>3</sub>OD (125 MHz).



Figure 1. Energy-minimized models for  $1\alpha$ ,  $11\alpha$ -dihydroxy (left) and  $1\alpha$ ,  $11\beta$ -dihydroxy-2, 3-dehydroconfertifolin (right).

<sup>13</sup>C NMR data (Table 3) and heteronuclear 2D studies entirely confirmed this assignment. Acetate **4b** was easily prepared by acetylation. Catalytic hydrogenation (PtO<sub>2</sub> in EtOAc) of **4a** selectively afforded the corresponding 2,3-reduced derivative (1α-hydroxyconfertifolin) **6**. Other catalysts, such as palladium on charcoal or Crabtree's catalyst were ineffective for reducing the  $\Delta^{2,3}$  double bond.

Oxidation of 2,3-dehydroconfertifolin **3** with excess selenium dioxide (see Table 2) afforded mainly the unexpected  $1\alpha$ , $11\alpha$ -hydroxy derivative **5a**. The 2,3-dehydro-11-hydroxy derivative was not detected. The assignment of an additional  $11\alpha$ -hydroxylation was based on  $^{1}H$  and  $^{13}C$  NMR data, and particularly on NOESY experiments which showed very similar nuclear Overhauser effects between CH<sub>3</sub>-15 and H-11 or CH<sub>3</sub>-15 and H-1 $\beta$ , indicating very similar distances. Molecular modelling of  $11\alpha$ - and  $11\beta$ -hydroxylated derivatives (Fig. 1) showed that this pattern was only compatible with an  $11\alpha$ -hydroxyl group: in minimized models a distance of  $3.15\pm0.1$  Å was measured between CH<sub>3</sub>-15/H-11 $\beta$  or H-1 $\beta$  for an  $11\alpha$ -OH group,



**Figure 2.** ORTEP representation of **7c** with ellipsoids at 50% probability level. Oxygen atoms are dashed.

vs  $CH_3$ -15/H-11 $\alpha$ =4.22 Å and  $CH_3$ -15/H-1 $\beta$ =3.03 Å measured for an 11 $\beta$ -OH group.

The additional allylic oxidation by SeO<sub>2</sub> in the lactone ring is strictly dependent on the presence of the 2,3-unsaturation and/or the  $1\alpha$ -hydroxy structure because, in identical reaction conditions, confertifolin remained unchanged. Such  $11\alpha$ -hydroxylated derivatives have been already found as minor natural products such as valdiviolide **8** in various *Drimys* species or fuegine **9** in *Polygonum hydropiper* L., but their stereochemistry at C-11 remains to be clarified.  $12^{-14}$ 

Mild acetylation of the dihydroxy derivative  $\bf 5a$  provided regioselectively the monoacetate  $\bf 5b$  and the diacetate  $\bf 5c$  while catalytic hydrogenation of  $\bf 5a$  (PtO<sub>2</sub> in EtOAc, 15 psi) afforded the corresponding 2,3-reduced derivative  $(1\alpha,11\alpha-\text{dihydroxy-confertifolin})$   $\bf 7a$ . Catalytic hydrogenation of the monoacetate derivative  $\bf 5b$  was not successful, because the  $1\alpha$ -acetyl group was transferred in part to the  $11\alpha$ -position and no pure compound  $\bf 7b$  could be isolated. Hydrogenation of the diacetate  $\bf 5c$  afforded a diacetate  $\bf 7c$ , but this one did not present convincing NMR data for an  $11\alpha$ -(acet)oxy derivative, as previously observed with  $\bf 5a$ . However, an X-ray determination 15 unambiguously demonstrated a  $1\alpha,11\alpha$ -diacetoxy structure (Fig. 2).

#### 3. Conclusions

For the first time, an  $11\alpha$ -hydroxy hemiketal structure in the drimenic lactone series is unambiguously demonstrated and should be compared to previously known natural products, such as valdiviolide, fuegin<sup>12,13</sup> and cinnamolide derivatives.<sup>14</sup>

HQ 
$$R_1Q$$
  $R_2Q$   $R_1Q$   $R_1Q$ 

Moreover, it is of some interest that some of the prepared derivatives and particularly the 2,3-reduced monoacetate **7b** present marked similarities with part of the unusual structures of several cytotoxic sesterpenes of marine sponges, <sup>16–18</sup> such as scalarin **10** for example.

## 4. Experimental

#### 4.1. General

General experimental methods have been already described. High resolution mass spectrometry (HRMS) was performed on a JEOL MS700 spectrometer. EI- and CIMS were performed on a Hewlett–Packard 5989B instrument. Incubation course was monitored by GC-MS, using a 25 m×0.2 mm Ultra 2 (Hewlett–Packard) capillary column (temp. programmed 110–270° at 8° min<sup>-1</sup>). Column chromatography was performed on silicagel Merck 60H (70–230 mesh). H NMR and H NMR spectra were acquired in CDCl<sub>3</sub> or CD<sub>3</sub>OD solutions at 200 or 500 and 50 or 125 MHz, respectively.

Acetylations were performed in  $CH_2Cl_2$  at the ice bath temperature with acetic anhydride (3–4 equiv.) in the presence of DMAP (4–5 equiv.). Total conversion was checked by thin layer chromatography. Hydrogenation of 2,3-dehydro derivatives was performed with  $PtO_2$  catalyst in EtOAc (kept on  $K_2CO_3$ ) at room temperature and atmospheric pressure during 6–8 h.

### 4.2. Starting material

Pure confertifolin **1** was prepared by vacuum distillation of the natural extract mixture of *D. winteri*, purified by column chromatography (Silicagel, cyclohexane–ethyl ether) and crystallized from CH<sub>2</sub>Cl<sub>2</sub>–pentane: mp 150–151°C,  $[\alpha]_D^{22}$ =+71.7° (*c* 1.83, CHCl<sub>3</sub>). IR and NMR data were in full agreement with earlier literature. <sup>11,20,21</sup>

Cultivation and incubation of fungal strains with confertifolin 1, and isolation of 3β-hydroxyconfertifolin 2 have been previously described.<sup>8</sup>

**4.2.1. 2,3-Dehydroconfertifolin 3.** This compound was prepared, following the earlier described protocol, from 3β-hydroxyconfertifolin 2 (539 mg), triphenylphosphine (2.26 g) and diethyldiazodicarboxylate (1.35 mL) in refluxing anhydrous THF (21.6 mL). After usual work-up, chromatographic purification and two crystallizations from pentane-ethyl ether, dehydroconfertifolin 3 (438 mg, 86%) was obtained: mp 131°C.  $[\alpha]_D^{20} = +155^\circ$  (c 0.865, CHCl<sub>3</sub>). HRMS (CI-NH<sub>3</sub>) calc. for  $C_{15}H_{22}O_2$  (M+1) 233.1542, found 233.1546. IR (CCl<sub>4</sub>),  $\nu_{\text{max}}$  (cm<sup>-1</sup>): 3017, 2963, 2868, 1765, 1676, 1449, 1374, 1344, 1028. <sup>1</sup>H NMR (200 MHz, CDCl<sub>3</sub>)  $\delta$  ppm: 0.96, 1.03, 1.17 (9H, 3s, CH<sub>3</sub>-15, -14 and -13), 4.70 (2H, AB part of an ABXY system between H<sub>2</sub>-11 and H<sub>2</sub>-7,  $J_{AB}$ =16.9 Hz,  $J_{AX}$ = 3.6 Hz,  $J_{AY}$ =1.5 Hz and  $J_{BX}$ = $J_{BY}$ =2.7 Hz, H-11 $\alpha$  and H-11β), 5.50–5.52 (br.m, 2H, H-2 and H-3). <sup>13</sup>C NMR, see Table 3.

# 4.2.2. $1\alpha$ -Hydroxy-2,3-dehydroconfertifolin 4a. This

compound was prepared from **3** by oxidation with SeO<sub>2</sub> in dry dioxane at 100°C, as previously described. After two crystallizations from pentane–CH<sub>2</sub>Cl<sub>2</sub>, mp 188–190°C. [α]<sub>D</sub> <sup>18</sup>=+295° (c 0.56, CHCl<sub>3</sub>). HRMS (CI–NH<sub>3</sub>) calc. for C<sub>15</sub>H<sub>22</sub>O<sub>3</sub> (M+1) 249.1491, found 249.1495. IR (CCl<sub>4</sub>),  $\nu_{\rm max}$  (cm<sup>-1</sup>): 3615, 3446, 3020, 2963, 2868, 1763, 1736 (sh.), 1668, 1388, 1153, 1034. HNMR (200 MHz, CDCl<sub>3</sub>) δ ppm: 0.96, 1.07, 1.09 (9H, 3s, CH<sub>3</sub>-15, -14 and -13), 3.87 (1H, br.s, d after D<sub>2</sub>O addition,  $J_{1-2}$ =5.2 Hz, H-1β), 4.72, 4.80, 4.94, 5.02 (2H, AB part of an ABXY system, between H<sub>2</sub>-11 and H<sub>2</sub>-7,  $J_{\rm AB}$ =16.5 Hz,  $J_{\rm AX}$ =  $J_{\rm AY}$ =2.7 Hz,  $J_{\rm BX}$ =1.4 Hz and  $J_{\rm BY}$ =3.5 Hz, H-11α and H-11β), 5.64, 5.69, 5.74, 5.77, 5.78, 5.81 (2H, AB part of an ABX system between H-2, H-3 and H-1β,  $J_{\rm AB}$ =10 Hz,  $J_{\rm AX}$ =0,  $J_{\rm BX}$ =5.7 Hz, H-2 and H-3). <sup>13</sup>C NMR, see Table 3.

**4.2.3.** 1α-Hydroxyconfertifolin **6.** 62 mg of **4a** were hydrogenated in the presence of PtO<sub>2</sub> (39 mg) in EtOAc (3.4 mL) during 8 h. After filtration through Celite and two crystalizations from pentane–CH<sub>2</sub>Cl<sub>2</sub>, mp 185–186.5°C.  $[\alpha]_D^{21}$ = +96° (c 0.38, CHCl<sub>3</sub>). HRMS (CI–NH<sub>3</sub>) calc. for C<sub>15</sub>H<sub>23</sub>O<sub>3</sub> (M+1) 251.1647, found 251.1648. IR (CCl<sub>4</sub>),  $\nu_{\text{max}}$  (cm<sup>-1</sup>): 3688, 3608, 3464, 3008, 2943, 2872, 1747, 1674, 1459, 1086, 1028; <sup>1</sup>H NMR (200 MHz, CDCl<sub>3</sub>) δ ppm: 0.95, 1.02, 1.19 (9H, 3s, CH<sub>3</sub>-15, -14 and -13), 3.83 (1H, br.s, H-1β), 4.69, 4.77, 4.94, 5.03 (2H, AB part of an ABXY system, between H<sub>2</sub>-11 and H<sub>2</sub>-7,  $J_{\text{AB}}$ =16.6 Hz,  $J_{\text{AX}}$ =  $J_{\text{AY}}$ =2.7 Hz,  $J_{\text{BX}}$ =3.4 Hz and  $J_{\text{BY}}$ =1.5 Hz, H-11α and H-11β). <sup>13</sup>C NMR, see Table 3.

**4.2.4.** 1α-Acetoxy-2,3-dehydroconfertifolin 4b. This compound was obtained by acetylation of 4a, usual work-up and crystallization from pentane–EtOAc (yield 80–85%): mp 190–200°C dec. [α]<sub>D</sub><sup>20</sup>=+358° (c 0.45, CHCl<sub>3</sub>). IR (CCl<sub>4</sub>),  $\nu_{\rm max}$  (cm<sup>-1</sup>): 3026, 2964, 2943, 1767, 1740, 1680, 1449, 1370, 1334, 1028. HRMS (CI–NH<sub>3</sub>) calc. for C<sub>17</sub>H<sub>23</sub>O<sub>4</sub> (M+1) 291.1596, found 291.1594. <sup>1</sup>H NMR (200 MHz, CDCl<sub>3</sub>) δ ppm: 0.99, 1.10, 1.18 (9H, 3s, CH<sub>3</sub>-15, -14 and -13), 1.99 (3H, s, CH<sub>3</sub>CO), 4.44, 4.53, 4.72, 4.80 (2H, AB part of an ABXY system, between H<sub>2</sub>-11 and H<sub>2</sub>-7,  $J_{\rm AB}$ =16.7 Hz,  $J_{\rm AX}$ =1.3 Hz,  $J_{\rm AY}$ =3.7 Hz, and  $J_{\rm BY}$ = $J_{\rm BX}$ =2.8 Hz, H-11α and H-11β, 4.96 (1H, d,  $J_{\rm 1-2}$ =4.6 Hz, H-1β), 5.74, 5.79, 5.80, 5.82, 5.87 (2H, complex m, H-2 and H-3). <sup>13</sup>C NMR, see Table 3.

From a mixture of  $4\mathbf{a} + 5\mathbf{a}$  (470 mg, 26:74), obtained after oxidation with excess SeO<sub>2</sub> (see Table 2) and acetylated overnight, a chromatographic separation afforded the *monoacetates*  $4\mathbf{b}$  (203 mg) and  $5\mathbf{b}$  (128 mg) and the *diacetate*  $5\mathbf{c}$  (245 mg).

**4.2.5.** 1α,11α-Dihydroxy-2,3-dehydroconfertifolin 5a. This compound was obtained by mild hydrolysis of **5b** (or **5c**) with  $K_2CO_3$  in aqueous MeOH. After two crystallizations from EtOAc-pentane, mp 179–180°C;  $[\alpha]_D^{21}$ =+321° (c 0.35, CH<sub>3</sub>OH). HRMS (CI–NH<sub>3</sub>) calc. for  $C_{15}H_{24}O_4N$  (M+18) 282.1704, found 282.1705. <sup>1</sup>H NMR (500 MHz, CD<sub>3</sub>OD) δ ppm: 0.99, 1.09, 1.19 (9H, 3s, CH<sub>3</sub>-15, -14 and -13), 1.93 (2H, s+dd, J=6 and 12 Hz, H-5 and H-6α), 1.65 (1H, m, H-6β), 2.13 (1H, m, H-7α), 4.08 (1H, br.s, H-1β), 2.39 (1H, dd,  $J_{7\beta-7\alpha}$ =18 Hz,  $J_{7\beta-6\alpha}$ = $J_{7\beta-6\beta}$ =5 Hz, H-7β), 5.66, 5.68, 5.72, 5.73, 5.74, 5.75 (2H, AB part of an ABX system between H-2, H-3 and H-1β,  $J_{AB}$ =10 Hz,  $J_{AX}$ =0,

 $J_{\rm BX}$ =5 Hz, H-2 and H-3), 6.30 (1H, s, H-11 $\beta$ ). <sup>13</sup>C NMR, see Table 3.

- **4.2.6.** 1α-Acetoxy-11α-hydroxy-2,3-dehydroconfertifolin **5b.** After crystallization from pentane–EtOAc, mp 183–186°C.  $[\alpha]_D^{22}=+307^\circ$  (c 0.305, CHCl<sub>3</sub>). HRMS (CI–NH<sub>3</sub>) calc. for C<sub>17</sub>H<sub>26</sub>O<sub>5</sub> (M+1) 324.1811, found 324.1804. IR (CCl<sub>4</sub>),  $\nu_{max}$  (cm<sup>-1</sup>): 3027, 3013, 2986, 2931, 1760, 1728, 1602, 1465, 1422, 1370, 1264, 1083, 1019. <sup>1</sup>H NMR (200 MHz, CD<sub>3</sub>OD) δ ppm: 0.96, 1.04, 1.26 (9H, 3s, CH<sub>3</sub>-15, -14 and -13), 1.98 (3H, s, CH<sub>3</sub>CO), 5.11 (1H, d,  $J_{1-2}$ =5.3 Hz, H-1β), 5.68, 5.73, 5.76, 5.79, 5.81, 5.84, 5.91 (2H, AB part of an ABX system, between H-2, H-3 and H-1β,  $J_{AB}$ =10 Hz,  $J_{AX}$ =0, and  $J_{BX}$ =5.3 Hz, H-2 and H-3), 6.0 (1H, br.s, H-11β). <sup>13</sup>C NMR, see Table 3.
- **4.2.7. 1**α,11α-Diacetoxy-2,3-dehydroconfertifolin 5c. After two crystallizations from pentane–CH<sub>2</sub>Cl<sub>2</sub>, mp 142–145°C. [α]<sub>D</sub><sup>20</sup>=+238° (c 0.5, CHCl<sub>3</sub>). IR (CCl<sub>4</sub>),  $\nu_{\rm max}$  (cm<sup>-1</sup>): 2979, 2927, 2854, 1786, 1736, 1371, 1242, 1204, 1075, 1018, 985. HRMS (CI–NH<sub>3</sub>) calc. for C<sub>19</sub>H<sub>24</sub>O<sub>6</sub> (M<sup>+</sup>) 348.1573, found 348.1577. <sup>1</sup>H NMR (200 MHz, CDCl<sub>3</sub>) δ ppm: 0.96, 1.08, 1.18 (9H, 3s, CH<sub>3</sub>-15, -14 and -13), 1.98 and 2.09 (6H, 2s, COCH<sub>3</sub>), 4.85 (1H, d,  $J_{1-2}$ =5.4 Hz, H-1β), 5.70, 5.75, 5.79, 5.81, 5.83, 5.86 (2H, AB part of an ABX system, between H-2, H-3 and H-1β,  $J_{\rm AB}$ =9.8 Hz,  $J_{\rm AX}$ =0, and  $J_{\rm BX}$ =5.4 Hz, H-2 and H-3), 6.97 (1H, t, J=0.75 Hz, H-11β). <sup>13</sup>C NMR, see Table 3.
- **4.2.8.** 1α,11α-Dihydroxyconfertifolin 7a. 68 mg of 5a were hydrogenated in the presence of PtO<sub>2</sub> (49 mg) in EtOAc (4.5 mL) during 6.5 h. After filtration through Celite and two crystallizations from EtOAc-pentane, mp 152–154°C. [α]<sub>D</sub><sup>20</sup>=+100° (c 0.95, CH<sub>3</sub>OH). HRMS (CI-NH<sub>3</sub>) calc. for C<sub>15</sub>H<sub>23</sub>O<sub>4</sub> (M+1) 267.1596, found 267.1593. <sup>1</sup>H NMR (500 MHz, CD<sub>3</sub>OD) δ ppm: 0.95, 0.98, 1.25 (9H, 3s, CH<sub>3</sub>-15, -14 and -13), 1.21 and 1.74 (3H, 2m, H<sub>2</sub>-3 and H-5), 1.61 and 2.04 (2H, 2m, H<sub>2</sub>-3), 1.66 (1H, m, H-6), 1.92 (1H, m, H-6), 2.12 (1H, m, H-7α), 2.33 (1H, dd,  $J_{7\beta-7\alpha}$ =18 Hz,  $J_{7\beta-6\alpha}$ = $J_{7\beta-6\beta}$ =5.8 Hz, H-7β), 4.05 (1H, br.s, H-1β), 6.30 (1H, br.s, H-11β). <sup>13</sup>C NMR, see Table 3.
- **4.2.9.** 1α-Acetoxy,11α-hydroxyconfertifolin 7b. Hydrogenation of 5b (50 mg) in EtOAc (3.5 mL) in the presence of PtO<sub>2</sub> (45 mg) during 5 h provided quantitatively a 3:1 mixture of 1α-acetoxy,11α-hydroxy and 1α-hydroxy,11α-acetoxy derivatives which were not separated by TLC. Despite repeated crystallization (CH<sub>2</sub>Cl<sub>2</sub>-pentane), a pure sample of the major constituent (7b) could not be obtained. HRMS (CI-NH<sub>3</sub>) calc. for C<sub>17</sub>H<sub>25</sub>O<sub>5</sub> (M+1) 309.1702, found 309.1696. <sup>1</sup>H NMR (200 MHz, CDCl<sub>3</sub>) δ ppm: 0.94, 0.98, 1.33 (9H, 3s, CH<sub>3</sub>-15, -14 and -13), 2.07 (3H, s, COCH<sub>3</sub>), 5.19 (1H, t, J=2.8 Hz, H-1β), 5.84 (1H, d, J=1.85 Hz, H-11β). <sup>13</sup>C NMR, see Table 3.
- **4.2.10.** 1α,11α-Diacetoxyconfertifolin 7c. Hydrogenation of 5c (66 mg) in EtOAc (4.5 mL) in the presence of PtO<sub>2</sub> (45 mg) during 4 h provided quantitatively 7c. After crystallization from CH<sub>2</sub>Cl<sub>2</sub>-pentane, mp 156-157°C. [α]<sub>D</sub><sup>20</sup>= +15.8° (c 0.228, CHCl<sub>3</sub>). IR (CCl<sub>4</sub>),  $\nu_{\rm max}$  (cm<sup>-1</sup>): 2957, 2933, 1784, 1735, 1374, 1248, 1203, 1046, 1012, 984. HRMS (CI-NH<sub>3</sub>) calc. for C<sub>19</sub>H<sub>27</sub>O<sub>6</sub> (M+1) 351.1806,

found 351.1802. <sup>1</sup>H NMR (200 MHz, CDCl<sub>3</sub>) δ ppm: 0.93, 1.00, 1.24 (9H, 3s, CH<sub>3</sub>-15, -14 and -13), 2.05 and 2.09 (6H, 2s, COCH<sub>3</sub>), 4.77 (1H, t, J=2.7 Hz, H-1β), 6.94 (1H, t, J=1.0 Hz, H-11β). <sup>13</sup>C NMR, see Table 3.

#### Acknowledgements

L. Moreno gratefully acknowledges CONICYT, Chile (Research Grant 2990102) for financial support. We want also to warmly thank Nicole Morin for all HRMS measurements.

#### References

- Azerad, R. In Stereoselective Biocatalysis; Patel, R., Ed.; Marcel Dekker: New York, 2000; pp. 153–180.
- 2. Hollinshead, D. M.; Howell, S. C.; Ley, S. V.; Mahon, M.; Ratcliffe, N. M.; Worthington, P. A. *J. Chem. Soc., Perkin Trans. I* **1983**, 1579–1589.
- Aranda, G.; Facon, I.; Lallemand, J. Y.; Leclaire, M.; Azerad, R.; Cortes, M.; Lopez, J.; Ramirez, H. *Tetrahedron Lett.* 1992, 33, 7845–7848.
- Ramirez, H. E.; Cortes, M.; Agosin, E. J. Nat. Prod. 1993, 56, 762–764.
- Atta-Ur-Rahman; Choudhary, M. I.; Ata, A.; Alam, M.; Farooq, A.; Perveen, S.; Shekhani, M. S.; Ahmed, N. J. Nat. Prod. 1994, 57, 1251–1255.
- Herlem, D.; Ouazzani, J.; Khuong-Huu, F. Tetrahedron Lett. 1996, 37, 1241–1243.
- Aranda, G.; Bertranne-Delahaye, M.; Lallemand, J.-Y.;
   Azerad, R.; Maurs, M.; Cortes, M.; Lopez, J. J. Mol. Catal:
   B.Enzymatic (Special Issue: Biotrans'97) 1998, 5, 255–259.
- 8. Maurs, M.; Azerad, R.; Cortes, M.; Aranda, G.; Bertranne-Delahaye, M.; Ricard, L. *Phytochemistry* **1999**, *52*, 291–296.
- Aranda, G.; Lallemand, J.-Y.; Azerad, R.; Maurs, M.; Cortes, M.; Ramirez, H.; Vernal, G. Synth. Commun. 1994, 24, 2525– 2535.
- Aranda, G.; Bertranne-Delahaye, M.; Azerad, R.; Maurs, M.; Cortes, M.; Ramirez, H.; Vernal, G.; Prangé, T. Synth. Commun. 1997, 27, 45–60.
- Appel, H. H.; Connolly, J. D.; Overton, K. H.; Bond, R. P. M. J. Chem. Soc. 1960, 4685–4692.
- Appel, H. H.; Bond, R. P. M.; Overton, K. H. *Tetrahedron* 1963, 19, 635.
- Ley, S. V.; Mahon, M. J. Chem. Soc., Perkin 1 1983, 1379– 1381.
- Fukuyama, Y.; Sato, T.; Miura, I.; Asakawa, Y. *Phyto-chemistry* 1985, 24, 1521–1524.
- 15. 7c was crystallized by slow evaporation of a methanol solution. A crystal 0.1×0.3×0.4 mm³ in size was recorded on a PHILIPS PW1100 diffractometer operating the CuKα radiation. Space group P21. Parameters are a=8.501(3); b=13.979(4); c=7.847(2) Å; β=90.26(7)° and Z=2. The structure was solved by direct methods and refined with anisotropic thermal factors (except for hydrogens) to a final R=6.9% for 1325 observed structure factors. The coordinates have been deposited with the Cambridge Crystallographic Data Centre (CCDC 157588).
- 16. Fattorusso, E.; Magno, S.; Santacroce, C.; Sica, D. *Tetrahedron* **1972**, 28, 5993–5997.
- 17. Lu, Q.; Faulkner, D. J. J. Nat. Prod. 1997, 60, 195-198.

- 18. Rueda, A.; Zubia, E.; Ortega, M. J.; Carballo, J. L.; Salva, J. *J. Org. Chem.* **1997**, *62*, 1481–1485.
- 19. Aranda, G.; El Kortbi, M. S.; Lallemand, J.-Y.; Hammoumi, A.; Facon, I.; Azerad, R. *Tetrahedron* **1991**, *47*, 8339–8350.
- 20. Nakano, T.; Maillo, M. A. Synth. Commun. 1981, 11, 463.
- 21. Hueso-Rodriguez, J. A.; Rodriguez, B. *Tetrahedron* **1989**, *45*, 1567–1576.